
Noname manuscript No.
(will be inserted by the editor)

A preconditioning technique for Schur complement
systems arising in stochastic optimization

Cosmin G. Petra · Mihai Anitescu

Received: date / Accepted: date

Preprint ANL/MCS-P1748-0510

Abstract Deterministic sample average approximations of stochastic programming

problems with recourse are suitable for a scenario-based parallelization. In this paper

the parallelization is obtained by using an interior-point method and a Schur comple-

ment mechanism for the interior-point linear systems. However, the direct linear solves

involving the dense Schur complement matrix are expensive, and adversely affect the

scalability of this approach. We address this issue by proposing a stochastic precon-

ditioner for the Schur complement matrix and by using Krylov iterative methods for

the solution of the dense linear systems. The stochastic preconditioner is built based

on a subset of existing scenarios and can be assembled and factorized on a separate

process before the computation of the Schur complement matrix finishes on the re-

maining processes. The expensive factorization of the Schur complement is removed

from the parallel execution flow and the scaling of the optimization solver is consid-

erably improved with this approach. The spectral analysis indicates an exponentially

fast convergence in probability of the eigenvalues of the preconditioned matrix with

the number of scenarios incorporated in the preconditioner. Numerical experiments

performed on the relaxation of a unit commitment problem show good performance,

in terms of both the accuracy of the solution and the execution time.

Keywords stochastic programming · saddle-point preconditioning · Krylov methods ·
interior-point method · sample average approximations · parallel computing

1 Introduction

Stochastic programming (SP) is concerned with solving optimization problems involv-

ing uncertainty in the objective and/or the constraints. In this paper we consider

two-stage stochastic problems with recourse having quadratic objective functions in

each stage. Although these problems are nonlinear optimization problems [7], they are
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known as two-stage stochastic quadratic problems with recourse (TSQP) [41]. TSQPs

are mathematically formulated as

min
(

1

2
xTQx+ cT x

)
+ G(x) subject to Tx = b, x ≥ 0, (1)

where G(x) = E[G(x, ξ(ω))] and G(x, ξ(ω)) is the optimal value of the second-stage

problem

min
1

2
uTQ(ω)u+ c(ω)Tu subject to W (ω)u = b(ω)− T (ω)x, u ≥ 0. (2)

Here ξ(ω) = (Q(ω), c(ω), T (ω),W (ω), b(ω)) denotes the data of the second-stage prob-

lem and is viewed as a random vector defined over a probability space Ω with a known

probability distribution P . The expected value E[G(x, ξ(ω))] is taken with respect to

ω ∈ Ω. We also assume that Q and Q(ω) are symmetric positive semidefinite and that

T , the technology matrices T (ω), and the recourse matrices W (ω) have full rank.

The first stage of the problem is the present moment of time, while the second stage

corresponds to a future point in time at which the uncertainty is revealed. However, a

decision x must be taken before the actual realizations of the uncertain parameters of

the second stage become available. The optimal decision x also must take into account

a “recourse” action for the possible outcome of the uncertainty. In the context of

stochastic programming problems with recourse, the objective consists of not only the

usual “operation cost”
(
1
2x
TQx+ cT x

)
but also the expected value E[G(x, ξ(ω))] of

the “recourse cost” taken with respect to all possible outcomes of the uncertainty.

In the case of a finitely supported distribution P , that is, there exist a finite number

of realizations ξ1, ξ2, . . . , ξN of the random vector ξ(ω), the recourse function is a

weighted average

G(x) =

N∑
i=1

piG(x, ξi),

where pi is the probability of ξi to occur, i = 1, 2, . . . , N . Consequently, the SP problem

(1)-(2) is a deterministic optimization problem with a special structure, see Section 2.1,

but standard derivative-based methods cannot be applied because of the nonsmooth

(piecewise differentiable, more exactly) recourse term. The reader may refer to [4,7]

for a detailed survey of algorithms for SP problems. The L-shaped method [52] and

its variants use Benders’ decomposition of the primal problem or a Dantzig-Wolfe de-

composition of the dual to exploit the special structure of the two-stage SP problem.

Based on cutting-plane subgradient approximation of the objective, this class of meth-

ods builds a lower convex, nondifferentiable estimate of the recourse cost function and

iterate by minimizing this estimate. Stabilization techniques such as quadratic regu-

larization [50] or an l∞ trust-region approach [35] are needed to make this class of

methods robust. Among the alternatives to subgradient-based methods we mention

Lagrangian-based approaches [47,34,48,49] and direct approaches that use simplex or

an interior-point method to solve the equivalent deterministic convex quadratic pro-

gramming problem of the form given by (7) (see Section 2.1).

The direct approach is competitive with other methods only if the optimization

method takes into account the staircase structure of the constraints’ Jacobian and the

separability of the objective function of the deterministic problem. In this paper we use

a primal-dual interior-point method (IPM) for solving the deterministic problem. This
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class of methods provides a unified framework for linear, quadratic and nonlinear con-

tinuous programming problems and requires virtually the same linear algebra. Based on

Newton’s method, IPMs exhibit polynomial complexity for convex programming prob-

lems and local superlinear or quadratic convergence for a large class of problems [53].

They also have emerged in the past twenty-five years as a practical method for solving

large-scale optimization problems.

For SP problems having a continuous probability distribution, the evaluation of the

recourse function G(x) requires integration of the function G(x, ξ(ω)) in the space of

the random parameters ξ(ω) [7]. Even if the integrand G(x, ξ(ω)) is easily evaluated,

the integration is usually untractable from a computational point of view even for

a relatively small size of ξ(ω). On the other hand, when the probability space Ω =

{ω1, ω2, . . .} is discrete, the expectation term G(x) is a weighted average of G(x, ξ(ωi),

i = 1, 2, . . ., and therefore the second stage has to be solved for each possible outcome

of Ω, possibly infinitely many times if Ω is not finite. Even in the finite case, the

cardinality of Ω can be extremely large since it increases exponentially with the number

of independent random variables of ξ(ω). In order to deal with the issue of numerical

integration for the continuous case and infinite or extremely large cardinality in the

discrete case, sampling methods are used to obtain a discrete finite approximation

of the randomness that is tractable from a computational point of view. Among the

sampling techniques used in the context of stochastic programming, we mention Monte

Carlo methods (covered in [7, Chapter 10] and [51, Chapter 5]), the Latin hypercube

sampling method [38], and the importance sampling method [16].

Two fundamental approaches emerge from the interplay of optimization and sam-

pling. The first is the “interior sampling” approach that performs the optimization

directly on (1) and relies on sampling to approximate the recourse function and its

derivative information. Methods following this approach include the stochastic quasi-

gradient method [20], the stochastic Newton method [5], the stochastic decomposition

method [32], and the L-shaped method based on importance sampling of [16]. Unfor-

tunately, repeated samplings make this approach infeasible for applications in which

the cost of the sampling is comparable with or larger than the cost of optimization.

Weather-based simulation and control problems [14] are such examples.

In the second approach, “exterior sampling”, the sampling is done only once at

the beginning of the optimization process. A finite sample ξ1, ξ2, . . . , ξN of N realiza-

tions (scenarios) of the random vector ξ(ω) is used to approximate the expected value

E[G(x, ξ(ω))] by averaging the values G(x, ξi), i = 1, 2, . . . , N . The so-called sample av-

erage approximation (SAA) problem obtained with this approach is a convex quadratic

deterministic programming problem having the form (7) with equiprobable scenarios

p1 = . . . = pN = 1/N . From a computational point of view, the SAA problem is a

stochastic programming problem with a finite number of realizations. Therefore, any

of the abovementioned numerical methods for the discrete SP problems can be applied

to SAA SP problems.

SAA problems can become extremely large. For example in [24], an SAA problem

having more than 1 billion variables was solved by using a primal-dual interior-point

method. SAA SP problems of this size and even considerably smaller sizes can be han-

dled only in a parallel environment with distributed memory, however, this requires

the problem to be decomposed into subproblems that can be solved independently on

different processors. In the context of subgradient-based or Lagrangian-based meth-

ods, the decomposition is obtained by evaluating the recourse function and obtaining

derivative information independently for each scenario. Once an approximation of the
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recourse term is available, the optimization in the space of the first-stage variables is

done in serial and thus causes a bottleneck in the parallel execution flow. On the other

hand, the decomposition of the problem in the context of IPMs is usually achieved at

the linear algebra level by taking advantage of the block-separable form of the objective

function and the half-arrow shape of the Jacobian. This special structure allows most of

the work related to IPM linear solves to be done independently for each scenario when

a Schur complement mechanism is used. Decompositions of the SP problems based

on the Schur complement and interior-point methods can be found as early as 1988

in the work of Birge and Qi [8]. Recently, IPM-based decomposition for SP problems

was implemented in state-of-the-art software packages such as OOPS [25,26,28] and

IPOPT [55]. A slightly different IPM decomposition is the log-barrier Benders-like de-

composition introduced by Zhao in [58] for linear problems and extended by Mehrotra

and Ozevin to the quadratic case [41] and to two-stage stochastic conic problems [40,

42]. A potential advantage of the log-barrier Benders decomposition consists of adap-

tively adding or removing scenarios during the optimization. However, the two IPM

approaches share the same linear algebra, and the technique presented in this paper

applies equally to both.

In the early 1990s, because of the limited network bandwidth, the IPM decompo-

sition based on the Schur complement did not prove to be very scalable since it moves

large matrices across processors. With the new high-speed interconnects, however, the

network bandwidth does not have the same limiting effect, and the main drawback

of IPM decomposition is similar to the one of L-shaped methods, namely, the linear

algebra of the first stage cannot be started until all the second-stage information is

available. More specifically, the only work that cannot be done independently for each

scenario consists of linear solves with the Schur complement of the first-stage Hessian

subblock in the entire Hessian matrix. The Schur complement for two-stage stochastic

programming is a saddle-point linear system of the form[
H TT

T 0

] [
x

y

]
=

[
r1
r2

]
,

where the block H ∈ Rnx0
×nx0 is almost completely dense (nx0 is the number of the

first-stage variables). The presence of the dense block H incurs a cost of approximately

O(n3x0
) for each linear solve with the Schur complement matrix. For problems hav-

ing a large number of first-stage variables, the O(n3x0
) cost becomes dominant for a

relatively large number of processors and adversely affects the scalability of the IPM

decomposition method.

In this paper we propose an alternative method for the solution of the Schur com-

plement linear systems. The goal of the current work is to remove the cost of the direct

factorization of the Schur matrix associated with the first-stage variables from the par-

allel execution flow. We substitute the direct solve of the Schur complement matrix with

Krylov subspace iterative methods. In the context of the ill-conditioned saddle-point

linear systems arising from the primal-dual interior-point algorithms, Krylov methods

are known to perform well only when used with a preconditioner. A popular precon-

ditioning approach for the saddle-point linear systems is the constraint preconditioner

[2,17,33,36,44] that replaces the (1, 1) block of the matrix by an easily invertible ap-

proximation matrix, while keeping the constraints blocks (1, 2) and (2, 1) intact. For

example, diagonal approximations of the (1, 1) block have been used in [3], and implicit

factorizations of the same block have been proposed in [18,19].
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The stochastic preconditioner we propose in this paper approximates the (1, 1)

block from the Schur complement matrix by incorporating only a subset of available

scenarios of the SAA problem. Factorization of the preconditioner is carried out on a

separate process before all scenarios are finished and the bottleneck is thus removed.

We analyze the preconditioner from the perspective of the theory of large deviations

and show that the eigenvalues of the preconditioned matrix cluster exponentially fast

around 1 with the number of the scenarios incorporated in the preconditioner. In

practice, the preconditioner allows the Krylov methods to solve the ill-conditioned

IPM linear systems with the same accuracy as a direct solver in a small number of

iterations.

The paper is organized as follows. In Section 2 we present the linear algebra re-

quired by interior-point methods for the solution of the SAA problem. The stochastic

preconditioners are introduced and analyzed in Section 3, and the details of their im-

plementation are presented in Section 4. In Section 5 we investigate and report on the

practical performance of the preconditioners. The conclusions of this work and related

future research directions are given in Section 6.

2 Linear algebra in interior-point methods

In this section we present the linear algebra operations needed by path-following

interior-points methods to solve convex quadratic programming problems of the form

min
1

2
xTQx+ cT x subject to Ax = b, x ≥ 0. (3)

Path-following interior-point methods make use of the “central path”, which is a

continuous curve (x(µ), y(µ), z(µ)), µ > 0, satisfying

Qx−AT y − z = −c,
Ax = b,

xz = µe,

x, z > 0.

(4)

Here y ∈ Rm and z ∈ Rn correspond to the Lagrange multipliers, e = [ 1 1 . . . 1 ]T ∈
Rn and xz denotes the componentwise product.

In the case of a feasible problem (3), the above system has a unique solution

(x(µ), y(µ), z(µ)) for any µ > 0, and, as µ approaches zero, (x(µ), y(µ), z(µ)) ap-

proaches a maximal complementarity solution of (3), see Chapter 2 in [53]. A path-

following method is an iterative numerical process that follows the central path in the

direction of decreasing µ toward the solution set of the problem. The iterates generated

by the method generally do not stay on the central path. Rather, they are located in

a controlled neighborhood of the central path that is a subset of the positive orthant.

In the past two decades, predictor-corrector methods have emerged as practical

path-following IPMs in solving linear and quadratic programming problems. Among

the predictor-corrector methods, the most successful is Mehrotra’s predictor-corrector

algorithm. Although Mehrotra [39] presented his algorithm in the context of linear pro-

gramming, it has been successfully applied also to convex quadratic programming [21]

and standard monotone linear complementarity problems [56]. It also has been widely

used in the implementation of several IPM-based optimization packages, including OB1

[37], HOPDM [23], PCx [15], LIPSOL [57], and OOQP [21].
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Two linear systems of the form (5) are solved at each IPM iteration to obtain

the predictor and corrector search directions. For a detailed description of Mehrotra’s

method used in this paper we refer the reader to [21,39,53]. Let us denote the kth

IPM iteration by (xk, yk, zk). Also let Xk and Zk denote the diagonal matrices with

the (positive) entries given by xk and zk. The linear system solved during both the

predictor and corrector phase to obtain the seach direction (∆xk,∆yk,∆zk) is

Q∆xk −AT∆yk −∆zk = r1k
A∆xk = r2k

Zk∆xk +Xk∆zk = r3k.

(5)

While the right-hand sides r1k, r2k, and r3k are different for the predictor and the correc-

tor, the matrix remains the same ( this feature gives important computational savings,

since only one factorization, not two, per IPM iteration is required).

By performing block elimination for ∆zk, the linear systems (5) can be reduced to

the following symmetric indefinite linear system

[
Q+D2

k A
T

A 0

] [
∆xk
−∆yk

]
=

[
r1k +X−1k r3k

r2k

]
, (6)

where Dk = X
− 1

2

k Z
1
2

k .

The linear system (6) is known as the “augmented system” and is typically solved

by performing a Bunch-Parlett or Bunch-Kaufman factorization [10,11]. When the

direct factorization is not possible because of memory limitations, iterative techniques

for such systems are used [2,17]. An alternative to solving the augmented system is

the so-called “normal equations” approach which reduces the augmented system to

a symmetric positive definite system of the form A(Q + D2
k)−1AT∆yk = r which

can be solved by using Cholesky-based factorizations or iterative methods [2,12,29].

The normal equations approach is very popular in the context of linear programming

(Q = 0), but rarely used for quadratic programming because the factorization of Q+D2
k

and the multiple solves with its factors tend to be computationally burdensome.

2.1 The Schur complement decomposition

We now show how the parallelization of linear algebra can be achieved for two-stage SP

problems via the Schur complement mechanism. The technique parallelizes the solution

of the augmented system. For similar approaches for the solutions of normal equations

for linear programming we refer the reader to [8,6,45].

As we mentioned in the introduction, the two-stage stochastic programming prob-

lem (1)-(2) is equivalent, in the discrete case, or approximated, in the continuous case,

by a deterministic optimization problem with a particular form given by the staircase

structure of the constraints’ Jacobian and separability of the objective function. Any
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such deterministic problem can be formulated as

min
(

1

2
xT0 Q0x0 + cT0 x0

)
+

N∑
i=1

pi

(
1

2
xTi Qixi + cTi xi

)
subj to T0x0 = b0,

T1x0 + W1x1 = b1,

T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,

x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(7)

Here we use x0 for the first-stage variables and x1, . . . , xN for the variables of the

second-stage subproblems corresponding to a sample ξ1, . . . , ξN withdrawn from ξ(ω).

The same notation convention is used for the problem’s data: Q, c, b, and T from the

first-stage problem (1) are renamed to Q0, c0, b0, and T0, and Qi, ci, bi, Ti, and Wi,

i = 1, . . . , N , correspond to second-stage data Q(ω), c(ω), b(ω), T (ω), and W (ω).

The system (4) corresponding to (7) has the following form:

Q0x0 − TT0 y0 − 1
N

N∑
i=1

TTi yi − z0 = −c0,

1
NQixi −

1
NW

T
i yi − 1

N zi = − 1
N ci,

T0x0 = b0,

Tix0 +Wixi = bi, i = 1, 2, . . . , N,

x0z0 = µe,

xizi = 1
N µe, i = 1, . . . , N,

xi, zi ≥ 0, i = 0, 1, . . . , N.

(8)

In order to be consistent with the optimality conditions for stochastic programming

problems presented in [51], the multipliers y1, y2, . . . , yN and z1, z2, . . . , zN were scaled

by N in the derivation of (8).
The linear system (6) solved at each iteration of the interior-point algorithm be-

comes in the case of the two-stage SAA SP problem:

Q0 +D2
0 TT

0
1
N
TT
1 . . . 1

N
TT
N

1
N

(Q1 +D2
1) 0 1

N
WT

1 . . . 0

. . .
..
.

...
. . .

...
1
N

(QN +D2
N ) 0 0 . . . 1

N
WT

N
T0 0 . . . 0
1
N
T1

1
N
W1 . . . 0

...
...

. . .
...

1
N
TN 0 . . . 1

N
WN





∆x0
∆x1

...
∆xN
−∆y0
−∆y1
−∆y2

...
−∆yN


= r, (9)

where Di = X
− 1

2
i Z

1
2
i and r is computed accordingly. From now on we will use the

notation Q̄i = Qi +D2
i , i = 0, 1, 2, . . . , N .

A permutation of the blocks of the above linear system is needed to obtain the linear

system (10), which is specific to stochastic programming and suitable for parallelization.

Let us first consider the following permutation mapping

π =

(
1 2 3 . . . N N + 1 N + 2 N + 3 . . . 2N + 1 2N + 2

2N + 1 1 3 . . . 2N − 3 2N − 1 2N + 2 2 . . . 2N − 2 2N

)
.
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In this 2-line notation, the first row in π contains the arguments 1 to 2N + 2, and

the second row contains images π(1), . . . , π(2N + 2) of the permutation mapping. Also

consider the matrix Π of the same size and block structure as the matrix from (9) whose

blocks are 0 except (i, π(i)) blocks, i = 1, . . . , 2N + 2, which are identity matrices.

If the permutation Π is applied to both the equations (rows) and the unknowns

(columns) of (9), then the equivalent linear system (10) is obtained.



1
N Q̄1

1
NW

T
1 0 0

1
NW1 0 1

N T1 0

. . .
...

...
1
N Q̄N

1
NW

T
N 0 0

1
NWN 0 1

N TN 0

0 1
N T

T
1 . . . 0 1

N T
T
N Q̄0 TT0

0 0 . . . 0 0 T0 0





∆x1
−∆y1

...

∆xN
−∆yN
∆x0
−∆y0


= Πr. (10)

When the Schur complement of the lower right 2-by-2 block in the system’s matrix

is used, a scenario-based decomposition is obtained. The same mechanism is used in

[25,26,28,55] to achieve the parallelization of the problem. We briefly show how the

factorization as well as the forward and back substitutions phases can be parallelized;

we refer the reader to the abovementioned papers for more details.

We further simplify the notation and denote by K1,K2, . . . ,KN ,K0 the diagonal

blocks and by B1, B2, . . . , BN the bordering blocks of the system matrix of (10). Hence

Ki =

[
1
N Q̄i

1
NW

T
i

1
NWi 0

]
, K0 =

[
Q̄0 T

T
0

T0 0

]
,

Bi =

[
0 0

1
N Ti 0

]
, i = 1, 2, . . . , N.

Let ∆ui =
[
∆xTi −∆y

T
i

]T
, i = 0, 1, . . . , N , ∆u =

[
∆uT1 . . . ∆uTN ∆uT0

]T
, and let

Πr be of the form
[
rT1 . . . rTN rT0

]T
.

With the new notation, the matrix of the linear system (10) becomes

K =


K1 B1

. . .
...

KN BN
BT1 . . . BTN K0

 . (11)

Since K is symmetric, it can be factorized as LDLT , where L is a unit lower triangular

matrix and D is block diagonal matrix with 1× 1 and 2× 2 diagonal blocks [10,11].

One can easily verify that L and D have the following particular structures,

L =


L1

...
. . .

LN
LN1 . . . LNN Lc

 , D =


D1

. . .

DN
Dc

 ,
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where

LiDiL
T
i = Ki, i = 1, . . . , N, (12)

LNi = BTi L
−T
i D−1i , i = 1 . . . , N, (13)

LcDcL
T
c = C = K0 −

N∑
i=1

BTi K
−1
i Bi. (14)

Observe that C defined above is the Schur complement of the first-stage Hessian block

K0 in the entire Hessian matrix K.

Consequently, the following steps are needed to solve K∆u = r:

wi = L−1i ri, i = 1, . . . , N, (15)

w0 = L−1c

(
r0 −

N∑
i=1

LNiwi

)
, (16)

v0 = D−1c w0, vi = D−1i wi, i = 1, . . . , N, (17)

∆u0 = L−Tc v0, (18)

∆ui = L−Ti (vi − LNi∆u0), i = 1, . . . , N. (19)

These operations can be divided into four phases:

– Factorization: (12), (13) and (14);

– Forward substitution: steps (15) and (16);

– Diagonal solve: step (17);

– Back substitution: steps (18) and (19).

3 The preconditioning

In this section we first introduce and analyze the spectral properties of a precondi-

tioner for the symmetric positive definite (1, 1) block of the Schur complement matrix

C. The preconditioner approximates the (1, 1) block of C by using a subset of the exist-

ing scenarios; it is called “stochastic preconditioner”. We then present two approaches

for iteratively solving C∆u0 = r0. The first approach algebraically incorporates the

stochastic preconditioner into a symmetric indefinite preconditioner for C. The re-

sulting preconditioner is known in the literature as the constraint preconditioner. The

second approach uses the stochastic preconditioner with a projected conjugate gradient

method to solve a reduced linear system.

The expression (14) of the Schur complement matrix C can be rewritten as

C =

[
Q̄0 T

T
0

T0 0

]
− 1

N

N∑
i=1

[
0 TTi
0 0

] [
Q̄i W

T
i

Wi 0

]−1 [
0 0

Ti 0

]
. (20)

We use the following well-known matrix inversion identity to express the Schur

complement matrix C in terms of the data of the original problem.
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Lemma 1 For any nonsingular matrix A and any full-rank matrix B the following

matrix identity holds:

[
A BT

B 0

]−1
=

A−1 −A−1BT
(
BA−1BT

)−1
BA−1 A−1BT

(
BA−1BT

)−1(
BA−1BT

)−1
BA−1 −

(
BA−1BT

)−1
 .

Proof By direct verification.

By applying the above identity to each of the inner blocks of the summation from

(20), C can be written as

C =

 Q̄0 + 1
N

N∑
i=1

TTi

(
WiQ̄

−1
i WT

i

)−1
Ti TT0

T0 0

 . (21)

3.1 The stochastic preconditioner

Let us denote the (1, 1) block from (21) by SN and observe that

SN =
(
Q0 +D2

0

)
+

1

N

N∑
i=1

Mi,

where

Mi = TTi

(
Wi

(
Qi +D2

i

)−1
WT
i

)−1
Ti.

Let ξk1 , ξk2 , . . . , ξkn be an independent identically distributed (IID) sample with-

drawn from ξ1, ξ2, . . . , ξN with n << N , and denote

Sn =
(
Q0 +D2

0

)
+

1

n

n∑
i=1

Mki .

We propose Sn as a preconditioner for SN .

In the remainder of this section we show that the probability that the eigenvalues

of the preconditioned matrix S−1n SN are outside an ε-ball centered at 1 exponentially

approaches 0 as n increases. In other words, the eigenvalues of the preconditioned

matrix cluster around 1 “exponentially” with the number of subsamples. The fact

that the eigenvalues cluster around 1 is obvious since for n = N the preconditioned

matrix is exactly the identity matrix. The exponential rate of clustering will make the

preconditioner effective since n is taken to be much smaller than N for the sake of

parallel efficiency.

In particular we regard the entries of matrices Mi, i = 1, . . . , N as independent

identically distributed realizations of the corresponding entries of the random matrix

M(ω) = TT (ω)

(
W (ω)

(
Q(ω) +D2(ω)

)−1
WT (ω)

)−1
T (ω), (22)

and use the theory of large deviations to obtain the exponential convergence bounds.

One can see that M(ω) depends on the barrier parameter µ > 0 through the diagonal
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matrix D(ω). The analysis of this section is pointwise with µ; that is, the convergence

results hold for any µ > 0, but the exponential bounds change with µ.

We now present the assumptions on the random data ξ(ω) that are needed to

ensure that the entries of M(ω) are bounded random variables. We first assume the

boundedness of the random data of the two-stage SP problem:

(A1) There exists U > 0 such that ‖ξ(ω)‖ < U , for any ω ∈ Ω.

Second, we require the singular values of the recourse matrix W (ω) to be bounded

away from 0 and the singular values of the technology matrix T (ω) to stay bounded

uniformly with ω:

(A2) There exists σWm > 0 such that

0 < σWm ≤ σmin(W (ω)), for any ω ∈ Ω.

(A3) There exists σTM ∈ R such that

σmax(T (ω)) ≤ σTM for any ω ∈ Ω.

Another, obvious in some way, assumption is that the quadratic objective matrix

Q(ω) should also stay bounded uniformly with ω, namely

(A4) There exists λQM > 0 such that

λmax(Q(ω)) ≤ λQM for any ω ∈ Ω.

Note that in the case of a discrete or compact probability space Ω, Assumptions

(A2), (A3), and (A4) follow from Assumption (A1). Therefore, the conditions under

which we analyze the preconditioner hold for a large class of applications.

Furthermore, the homeomorphism of the mapping defining the central path (see

[31] or [43]) and Assumption (A4) allow us to consider the second-stage components of

the central path, namely x1(µ), . . . , xN (µ) and z1(µ), . . . , zN (µ) as IID realizations of

some random vectors χ = χµ(ω) and ζ = ζµ(ω) for any µ > 0. Consequently, we can

regard the diagonal matrices Di, i = 1, . . . , N , as realizations of the random matrix

Dµ(ω) = χ
− 1

2
µ ζ

1
2
µ . The boundedness of Dµ(ω) follows from the fact that x1, . . . , xN

must be positive since they satisfy (8) with µ > 0.

As we mentioned in Section 2, path-following algorithms follow the central path

approximately, and the iterates are situated in a neighborhood of the central path.

The proof of the randomness and boundedness of Dµ(ω) is intractable in the case of

Mehrotra’s algorithm because this method does not use an explicit neighborhood of

the central path. However, the algorithm maintains the positiveness of the updates by

backing off by a fixed factor whenever the boundary of the positive orthant is reached.

Therefore, we assume that the entries of D(ω) are bounded random variables:

(A5) For a given µ > 0, there exists positive numbers dµm and dµM such that

0 < dµm ≤
[
D2(ω)

]
ii
≤ dµM , for any i and ω ∈ Ω.

We now present the spectral results that are used in the proof of Lemma 3. By ‖ · ‖
we denote the 2-norm of a vector or matrix.

Lemma 2 Let Q ∈ Rn×n be a symmetric positive definite matrix and A ∈ Rm×n be

a full-rank matrix. The following statements hold:
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(i) The extreme eigenvalues of Q are characterized by

λmin(Q) = min
x6=0

xTQx

‖x‖2
and λmax(Q) = max

x6=0

xTQx

‖x‖2
= ‖Q‖.

(ii) The largest singular value of A is characterized by

‖A‖ = max
x6=0

‖Ax‖
‖x‖ = σmax(A) = max

y 6=0

‖AT y‖
‖y‖ = ‖AT ‖.

When m ≤ n, the smallest singular value of A satisfies

σmin(A) = min
x 6=0

‖AT x‖
‖x‖ .

(iii) In the case m ≤ n, the extreme eigenvalues of AQAT satisfy

λmin(Q)σ2min(A) ≤ λmin
(
AQAT

)
≤ λmax

(
AQAT

)
≤ λmax(Q)σ2max(A).

Proof (i) A simple proof can be obtained based on the symmetric Schur decomposition

of Q (page 393 in [22]) or based on the Courant-Fischer minimax theorem (also in [22],

page 394).

(ii) See [22], page 71.

(iii) For any y ∈ Rm, from (i) and (ii) we can write

yTAQAT y ≥ λmin(Q)‖AT y‖2 ≥ λmin(Q)σ2min(A)‖y‖2 and

yTAQAT y ≤ λmax(Q)‖AT y‖2 ≤ λmax(Q)σ2max(A)‖y‖2.

These inequalities and (i) applied to AQAT imply that λmin(Q)σ2min(A) is a lower

bound for λmin(AQAT ) and λmax(Q)σ2max(A) is an upper bound for λmax(Q)σ2max(A),

and hence inequalities from (iii) hold.

Lemma 3 Under Assumptions (A1)-(A5) the matrix

M(ω) = TT (ω)

(
W (ω)

(
Q(ω) +D2(ω)

)−1
WT (ω)

)−1
T (ω)

is well defined, and each of its entries is a bounded random variable.

Proof Since the entries of D2(ω) are positive and the Q(ω) is positive semidefinite, we

have that (see [22, Theorem 8.1.5])

dµm ≤ λmin
(
Q(ω) +D2(ω)

)
≤ λmax

(
Q(ω) +D2(ω)

)
≤ dµM + λQM , ∀ω, (23)

which implies that the matrix Q(ω) + D2(ω) is invertible. From (A2) we obtain that

W (ω)
(
Q(ω) +D2(ω)

)−1
WT (ω) is also invertible. This shows that M(ω) is well de-

fined and its components are random variables.

We now prove the componentwise boundedness. Observe that (23) also allows us

to deduce that

λmin

((
Q(ω) +D2(ω)

)−1)
≥ 1

dµM + λQM

, ∀ω. (24)
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Then by (iii) of Lemma 2 the following bound exists for the smallest eigenvalue of the

matrix W (ω)
(
Q(ω) +D2(ω)

)−1
WT (ω),

λmin

(
W (ω)

(
Q(ω) +D2(ω)

)−1
WT (ω)

)
≥

(
σWm

)2
dµM + λQM

,∀ω.

Therefore,

λmax

((
W (ω)

(
Q(ω) +D2(ω)

)−1
WT (ω)

)−1)
≤
dµM + λQM(
σWm
)2 , ∀ω. (25)

By the submultiplicative property of the 2-norms and based on (i) and (ii) of

Lemma 2 and the bound (25), the 2-norm of M(ω) can be bounded as follows

‖M(ω)‖ ≤
∥∥∥TT (ω)

∥∥∥∥∥∥∥(W (ω)
(
Q(ω) +D2(ω)

)−1
WT (ω)

)∥∥∥∥ ‖T (ω)‖

≤

(
σTM

)2
(
σWm
)2 (dµM + λQM

)
, ∀ω.

The boundedness of the entries of M(ω) follows immediately by writing

∣∣∣[M(ω)]ij

∣∣∣ =
∣∣∣eTi M(ω)ej

∣∣∣ ≤ ‖M(ω)‖ ≤

(
σTM

)2
(
σWm
)2 (dµM + λQM

)
, ∀ω,

and hence the lemma is proved.

Let us denote the expected value, or the population mean, of S(ω) = (Q0 +D2
0) +

M(ω) by S (= E[S(ω)]) and observe that the matrix SN is the sample mean. This re-

mark allows us to use the Hoeffding’s inequality [51] from the theory of large deviations

as a base for the proof that the eigenvalues of S−1N S cluster exponentially fast with

N around 1. The exponential clustering will also hold for the preconditioned matrix

S−1n SN since, under the IID sampling scheme used to obtain ξk1 , . . . , ξkn , the matrix

Sn is a sample mean of SN . In this case SN is the expected value taken with respect

to the empirical distribution given by ξ1, . . . , ξN .

Lemma 3 also implies the boundedness of S(ω), and we simplify the notation by

letting L > 0 (depending on λQM , σWm , σTM , and dµM as per Lemma 3) such that∣∣[S(ω)]ij
∣∣ < L, for any ω ∈ Ω.

Hoeffding’s inequality (see Chapter 7 of [51]) is a concentration result showing that

the probability that the sample mean is close to the population mean approaches 1

exponentially as the number of samples increases. In this case, it states that for any

ε > 0,

Pr
(∣∣[SN ]ij − Sij

∣∣ ≥ ε) ≤ 2 exp

(
− ε

2N

2L2

)
. (26)

The following lemma characterizes the distance between the components of the

identity matrix and the preconditioned matrix S−1N S. We denote by S and SN and by

‖S−1‖max the largest magnitude of the components of S−1. Note that the invertibility

of S follows from Lemma 3. Also we recall that the size of S and SN is denoted by

nx0 .
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Lemma 4 For any ε > 0,

Pr

(∣∣∣∣[I − S−1SN]ij
∣∣∣∣ ≥ ε) ≤ 2nx0exp

(
− ε2N

2n2x0L
2‖S−1‖2max

)
. (27)

Proof Since I − S−1SN = S−1(S − SN ), we have∣∣∣∣[I − S−1SN]ij
∣∣∣∣ =

∣∣∣∣∣
nx0∑
k=1

[
S−1

]
ik

[S − SN ]kj

∣∣∣∣∣ ≤ ‖S−1‖max
nx0∑
k=1

∣∣∣[S − SN ]kj

∣∣∣ ,
which allows us to write

Pr

(∣∣∣∣[I − S−1SN]ij
∣∣∣∣ ≥ ε) ≤ Pr

(nx0∑
k=1

∣∣∣[S − SN ]kj

∣∣∣ ≥ ε

‖S−1‖max

)
. (28)

In bounding the right term in the above inequality we use the following inequality

holding for any random variables Y1, Y2, . . . , Yp, p ≥ 1:

Pr

(
p∑
k=1

Yi ≥ a

)
≤

p∑
k=1

Pr

(
Yi ≥

a

p

)
. (29)

For a proof see [51, Inequality (7.101)]. Then (28) can be further bounded as follows:

Pr

(∣∣∣∣[I − S−1SN]ij
∣∣∣∣ ≥ ε) ≤ nx0∑

k=1

Pr

(∣∣∣[S − SN ]kj

∣∣∣ ≥ ε

nx0‖S−1‖max

)

≤
nx0∑
k=1

2 exp

(
− ε2N

2n2x0L
2‖S−1‖2max

)
(by (26))

= 2nx0exp

(
− ε2N

2n2x0L
2‖S−1‖2max

)
,

which proves the thesis.

Lemma 5 Let ε > 0. If the symmetric matrices A,B ∈ Rp×p satisfy

Pr
(∣∣Aij −Bij∣∣ ≥ ε) ≤ c exp

(
−Cε2

)
,∀i, j ∈ {1, 2, . . . , p},

for some constants c > 0 and C > 0 that does not depend on ε, then the eigenvalues of

A and B are characterized by

Pr (|λk(A)− λk(B)| ≥ ε) ≤ cp2 exp

(
−Cε2

p2

)
.

Proof By the Wielandt-Hoffman theorem (page 395 in [22]) we have that∑
k

(λk(A)− λk(B))2 ≤ ‖A−B‖2F . (30)

Furthermore, we can write
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Pr (|λk(A)− λk(B)| ≥ ε) = Pr
(
|λk(A)− λk(B)|2 ≥ ε2

)
≤ Pr

(
p∑
k=1

(λk(A)− λk(B))2 ≥ ε2
)

≤ Pr
(
‖A−B‖2F ≥ ε

2
)

(by (30))

= Pr

 p∑
i,j=1

|Aij −Bij |2 ≥ ε2


≤
p∑

i,j=1

Pr
(
|Aij −Bij |2 ≥ ε2/p2

)
(by (29))

=

p∑
i,j=1

Pr
(
|Aij −Bij | ≥ ε/p

)
≤ cp2 exp

(
−Cε2

p2

)
,

which completes the proof.

The following result shows that the eigenvalues of the preconditioned matrix S−1N S

cluster around 1 exponentially with the sample size N .

Theorem 1 For any ε > 0 the eigenvalues of S−1N S satisfy

Pr
(
|λ(S−1N S)− 1| ≥ ε

)
≤ 2n3x0

exp

(
−

N
(

ε
1+ε

)2
2n4x0L

2‖S−1‖2max

)
.

Proof Let us first consider an arbitrary ε ∈ (0, 1). By applying Lemma 5 to the matrices

I and S−1SN and using the inequality (27) given in Lemma 4, we can write

Pr
(
|λ(S−1SN )− 1| ≥ ε

)
≤ 2n3x0

exp

(
− ε2N

2n4x0L
2‖S−1‖2max

)
.

Since Pr
(
|λ(S−1SN )− 1| ≥ ε

)
= 1 − Pr

(
|λ(S−1SN )− 1| < ε

)
and λ(S−1SN ) =

1/λ(S−1N S), the above inequality can be transformed to

1− Pr
(

1

1 + ε
< λ(S−1N S) <

1

1− ε

)
≤ 2n3x0

exp

(
− ε2N

2n4x0L
2‖S−1‖2max

)
,

or,

1−Pr
(

1− ε

1 + ε
< λ(S−1N S) < 1 +

ε

1− ε

)
≤ 2n3x0

exp

(
− ε2N

2n4x0L
2‖S−1‖2max

)
. (31)

It can be easily verified that 1− ε
1−ε < 1− ε

1+ε for any ε ∈ (0, 1). Therefore,

Pr
(

1− ε

1− ε < λ(S−1N S) < 1 +
ε

1− ε

)
≥ Pr

(
1− ε

1 + ε
< λ(S−1N S) < 1 +

ε

1− ε

)
,

and, based on (31), we obtain that

1− Pr
(

1− ε

1− ε < λ(S−1N S) < 1 +
ε

1− ε

)
≤ 2n3x0

exp

(
− ε2N

2n4x0L
2‖S−1‖2max

)
,

or, equivalently,

Pr
(
|λ(S−1N S)− 1| ≥ ε

1− ε

)
≤ 2n3x0

exp

(
− ε2N

2n4x0L
2‖S−1‖2max

)
. (32)
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Consider now an arbitrary ε > 0. We apply (32) to ε/(1 + ε) ∈ (0, 1), to obtain

Pr(

(
|λ(S−1N S)− 1| ≥ ε/(1 + ε)

1− ε/(1 + ε)
= ε

)
≤ 2n3x0

exp

(
−

N
(

ε
1+ε

)2
2n4x0L

2‖S−1‖2max

)
,

which completes the proof

As we mentioned before, the bound of Theorem 1 holds for the preconditioner

of interest, S−1n SN , since Sn is the sample mean of the population mean SN in the

empirical distribution given by ξ1, . . . , ξN . More specifically, we have

Pr
(
|λ(S−1n SN )− 1| ≥ ε

)
≤ 2n3x0

exp

(
−

n
(

ε
1+ε

)2
2n4x0L

2‖S−1N ‖
2
max

)
. (33)

A similar observation shows that the exponential clustering of the eigenvalues of

S−1n SN also occurs for stochastic programming problems with non-equiprobable sce-

narios. More specifically, let us assume that there are N scenarios ξ1, . . . , ξN , with

corresponding probabilities pi, i = 1, . . . , N , p1 + . . . + pN = 1. Observe that we now

have

SN =
(
Q0 +D2

0

)
+

N∑
i=1

piMi.

The key point in this case is to compute the preconditioner based on a set of n IID

samples ξk1 , . . . , ξkn withdrawn from the empirical distribution of ξ1, . . . , ξN (with

corresponding probabilities p1, . . . , pN ). The sampling can be easily done by using

Monte Carlo sampling [51], but any sampling that yields an IID subsample can be used.

The preconditioner is computed based on the same formula as in the equiprobable case,

that is

Sn =
(
Q0 +D2

0

)
+

1

n

n∑
i=1

Mki .

Under this sampling scheme, Sn is still a sample mean of the population mean SN and,

therefore, (33) holds.

3.2 The constraint preconditioner

A popular preconditioning technique for saddle-point matrices such as C is the class

of constraint preconditioners [33], that incorporates an existing preconditioner of the

(1, 1) block together with the (1, 2) and (2, 1) blocks of the original saddle-point system.

A constraint preconditioner corresponding to C is

M =

[
Sn T

T
0

T0 0

]
. (34)

The spectral analysis from [3] (see proof of Theorem 4.1 of the paper) reveals that

the preconditioned matrix M−1C has an eigenvalue at 1 with order of multiplicity

2my0 and nx0 −my0 real eigenvalues satisfying

0 < λmin(S−1n SN ) ≤ λ(M−1C) ≤ λmax(S−1n SN ),

where my0 are the number of equality constraints from the first-stage problem (number

of rows of T0). Hence the constraint preconditioner (34) possesses the same exponential

clustering of the eigenvalues around 1 as the stochastic preconditioner we introduced

in the previous section.
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Algorithm DSC for Process p ∈ P
Factorization phase
1. For each i ∈ Np factorize LiDiL

T
i = Ki;

2. Compute Cp = −
∑
i∈Np

BT
i K
−1
i Bi, all-reduce C =

∑
r∈P

Cr,

and compute C = C +K0;
3∗. Factorize the Schur complement LcDcLT

c = C;
Back substitution phase

4. For each i ∈ Np solve wi = L−1
i ri;

5. Compute
∑
i∈Np

LNiwi and all-reduce

N∑
i=1

LNiwi;

6∗. Solve w0 = L−1
c (r0 −

N∑
i=1

LNiwi);

Diagonal solve phase

7. For each i ∈ Np solve vi = D−1
i wi;

8∗. Solve v0 = D−1
c w0;

Forward substitution phase

9∗. Solve ∆u0 = L−T
c v0;

10. For each i ∈ Np solve ∆ui = L−T
i (vi − LNi∆u0).

4 Parallel implementation

The linear solve K∆u = Πr from Section 2 is suitable to a scenario-based paralleliza-

tion. While the factorizations and triangular solves involving the second-stage variable

are fully parallelizable, the factorization and triangular solves involving the first stage

variable are not because the Schur complement C given by (14) requires data from all

scenarios.

Our parallel implementation distributes both the data and the work corresponding

to second-stage variables across multiple processes and uses the Message Passing In-

terface (MPI) as the underlying mechanism for communication between processes. The

Schur complement C is stored and factorized on all processes. This approach causes a

bottleneck that is addressed by the preconditioning technique presented in Section 3.

Scenarios are evenly assigned to available computational units by solving a num-

ber partitioning problem. More exactly, if P = {1, 2, . . . , P} denotes the set of avail-

able computational units, and if there are N scenarios, each with positive load li,

i = {1, 2, . . . , N}, the number partitioning problem consists of finding a partition

N1,N2, . . . ,NP of {1, 2, . . . , N} such that the differences between∑
i∈N1

li,
∑
i∈N2

li, . . . ,
∑
i∈NP

li

are as small as possible, ideally zero. The load li is the wall-clock time needed to

perform work associated with scenario i at the previous interior-point iteration. For

the first interior-point iteration the load is computed based on the size and the fill-in

of the scenario’s data.

We first list the algorithm that uses the direct factorization of the Schur complement

matrix to solve the linear system K∆u = r given in Section 2. We call this algorithm

DSC (direct Schur complement); it solves a two-stage problem involving N scenarios by

using P processes. Once the partition N1,N2, . . . ,NP of {1, 2, . . . , N} is obtained, any
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process p ∈ P performs the set of operations listed in Algorithm DSC. The first-stage

operations that are performed on all processes are marked with a “*”.

4.1 Parallel implementation of the preconditioning

The factorization from step 3∗ and the solves from steps 6∗, 8∗, and 9∗ of Algorithm

DSC represent bottlenecks in the parallel execution flow because all processes must

perform them. In particular, the bottleneck caused by the factorization 3∗ of C ad-

versely affects the parallel scaling of Algorithm DSC. This adverse behavior is caused

by the fact that the Schur complement C is dense, and its factorization starts to dom-

inate the overall execution time when the ratio of scenarios per process become small.

We address this bottleneck by using iterative methods that make use of the precondi-

tioner Sn introduced and analyzed in Section 3. The factorization of C is completely

removed from the parallel execution flow, and the only bottleneck remains in the much

less expensive solve phase.

In this new approach, a Krylov-type iterative solver is applied to the system

C∆u0 = r0−
∑N
i=1 LNiwi, since the factors of C are not available anymore. In general,

preconditioned Krylov subspace methods require the inverse of the preconditioner to

be applied to a vector at each Krylov iteration. In our case, this step is done cheaply

by means of triangular solves with factors of the preconditioner. The factors of the

preconditioner are computed by a separate process P + 1 in the same time the other

P processes compute the terms of the Schur complement matrix C. Therefore, al-

though the factorization of the preconditioner has the same cost as the factorization

of the Schur complement, it does not create the factorization bottleneck of the Schur

complement.

A slightly more sophisticated scenario scheduling mechanism than that of Algo-

rithm DSC is implemented for Algorithm PSC. Namely, let K = {k1, k2, . . . , kn}
be the scenarios based on which the preconditioner Sn is constructed, and let N =

{1, 2, . . . , N} \ K be the set of remaining scenarios. The scenarios for K are assigned

to all P + 1 processes, and the scenarios from N are assigned only to processes 1, 2

through P . Once the scenarios from K are finished and Sn is computed, processes 1,

2 through P continue to compute the terms from the full Schur complement C, while

process P + 1 starts the factorization of the preconditioner. An even distribution of

the scenarios is obtained by setting up and solving two distinct number partitioning

problems for K and N similar to the partitioning problem from Algorithm DSC. Let

us denote the partitions found by K1,K2, . . . ,KP+1 for K and by N 1,N 2, . . . ,NP for

N .

The complete set of operations and the interprocess communication patterns needed

to solve the linear system K∆u0 = r are called generically Algorithm PSC (precondi-

tioned Schur complement) and are presented separately in Algorithm PSC-p for pro-

cesses 1, . . . , P and in Algorithm PSC-(P + 1) for process P + 1. The verb “reduce”

in the listings of the algorithms refers to parallel computing operation that combines

data held by different processes through an associative operator, in our case sumation,

and accumulates the result on a single process (reduce) or on all processes (all-reduce).

MPI routines MPI Reduce and MPI Allreduce correspond to these operations.

A comparison of Algorithm PSC-p and Algorithm PSC-(P + 1) shows that once

the scenarios used in Sn are computed (steps 1.1 and 2.1), processes 1, 2 through P

continue to compute the terms from the full Schur complement C (steps 1.2 and 2.2),
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Algorithm PSC-p (p = 1, 2, . . . , P )
Factorization phase
1.1. For each i ∈ Kp factorize LiDiL

T
i = Ki;

2.1. Compute CKp = −
∑
i∈Kp

BT
i K
−1
i Bi, reduce CK =

P+1∑
r=1

CKr on

process P + 1 and on process 1;

1.2. For each i ∈ N p factorize LiDiL
T
i = Ki;

2.2. Compute CNp
= −

∑
i∈Np

BT
i K
−1
i Bi, reduce CN =

P∑
r=1

CNr
on process 1, and,

on process 1 only, compute C = CK + CN +K0;
Back substitution phase

4. For each i ∈ Kp ∪N p solve wi = L−1
i ri;

5. Compute
∑

i∈Kp∪Np

LNiwi and reduce
N∑
i=1

LNiwi on process 1;

Iterative preconditioned solve (6, 8, 9)

Krylov iterative solve for ∆u0 = C−1(r0 −
N∑
i=1

LNiwi) (only process 1);

Process 1 sends and processes 2, . . . , P receive ∆u0;
Diagonal solve phase

7. For each i ∈ Kp ∪N p solve vi = D−1
i wi;

Forward substitution phase

10. For each i ∈ Kp ∪N p solve ∆ui = L−T
i (vi − LNi∆u0).

Algorithm PSC-(P+1)
factorization phase
1.1. For each i ∈ KP+1 factorize LiDiL

T
i = Ki;

2.1. Compute CKP+1
= −

∑
i∈KP+1

BT
i K
−1
i Bi, reduce CK =

P+1∑
r=1

CKr on

process P + 1 and on process 1, and compute M = CK +K0;
3. Factorize LMDMLT

M = M ;
Back substitution phase

4. For each i ∈ KP+1 solve wi = L−1
i ri;

5. Compute
∑

i∈KP+1

LNiwi and reduce

N∑
i=1

LNiwi on process 1;

Iterative preconditioned solve (6, 8, 9)
Apply preconditioner M−1 as many times process 1 needs it;
Receive ∆u0 from process 1;

Diagonal solve phase

7. For each i ∈ KP+1 solve vi = D−1
i wi;

Forward substitution phase

10. For each i ∈ KP+1 solve ∆ui = L−T
i (vi − LNi∆u0).

while process P + 1 starts the factorization of the preconditioner (step 3). The largest

number n of scenarios included in Sn is chosen such that process P + 1 completes step

3 before the other P processes finish steps 1.2 and 2.2. Therefore, the bottleneck 3∗

from Algorithm DSC is removed from the parallel execution flow of Algorithm PSC.

On the other hand, the iterative preconditioned Krylov solve of Algorithm PSC

is slightly more expensive than the corresponding solve with the factors of the Schur

complement (steps 6∗, 8∗, and 9∗) of Algorithm DSC. More exactly, each Krylov iter-
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ation requires the action of the inverse of the preconditioner, which has the same cost

as solving with the factors of the Schur complement, namely, O
(
(nx0 +mx0)2

)
, and a

total overhead of O
(
l(nx0 +mx0)2

)
is present in the iterative solve phase of Algorithm

PSC, where l is the number of Krylov iterations. However, the savings from the re-

moval of the direct factorization of the Schur matrix are O
(
(nx0 +mx0)3

)
, therefore,

Algorithm PSC is more scalable than Algorithm DSC whenever l << nx0 + mx0 . In

the numerical experiments presented in Section 5, the number l of iterations is no more

than 400, usually less than 10, while nx0 +mx0 is more than 10, 000.

The use of PSC in a single precessor environment is not recommended. In this sit-

uation, the factorization of the preconditioner can not be done in the same time with

the calculations related to second-stage, and adds to total execution time. Therefore

the most substantial benefit of PSC, i.e. the obliteration of the Schur complement

factorization, is annihilated by the same-cost factorization of the preconditioner. Fur-

thermore, the fact that the Krylov solve phase of PSC is several times more expensive

than the corresponding solve phase of DSC causes PSC to be slower than DSC in any

single process environment.

We have implemented a mechanism that decides at runtime whether to use PSC

or DSC. This mechanism requires no user intervention, estimates the execution times

needed by each of the two methods at the next IPM iteration and uses the one with

shorter execution time. The estimates are obtained by timing the linear algebra of the

Schur complement matrix (or the preconditioner) and the second-stage subproblems

at the IPM iteration that just ended. Such estimates are very reliable in the context of

IPMs, staying constant for the most of the iterates, and some of them steadily increasing

as the iterates approach the solution (because of the ill-conditioning of IPMs). The im-

plementation uses DSC for the first iteration, unless instructed otherwise, and assumes

that PSC needs l = 10 Krylov iterations when µ > 0.1 and l = 10 floor(log10(1/µ))

otherwise. Our tests showed that this decision mechanism is robust.

4.2 Implementation of the Krylov subspace iterative methods

The iterative methods we have implemented are BiCGStab [30] and the preconditioned

projected conjugate gradient (PPCG) from [29]. We apply BiCGStab to the saddle-

point linear system involving the Schur complement matrix C and use the constraint

preconditioner M given by (34). The products involving C are computed on process

1, and the products involving M−1 are performed remotely on process P + 1. At each

iteration two of such products are needed.

The PPCG method solves saddle-point linear system[
SN TT0
T0 0

] [
x

y

]
=

[
r1
r2

]
,

by making use of a basis Z0 that spans the null space of T0. The PPCG algorithm starts

at a point x that satisfies T0x = r2 and updates x by using a direction that lies in the

range of Z0 (i.e., the null space of T0) and computed by means of the (preconditioned)

projector operator

P = Z0(ZT0 S
−1
n Z0)ZT0 .

Consequently, the iterates x remain in the affine subspace given by T0x = r2. Once

the iterate x converges, y is found from (T0T
T
0 )y = r1 − T0SNx. The cost of solving
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for y is small since the factorization is done only once, at the first IPM iteration. An

important observation here is that Z0 does not have to be explicitly computed. Instead,

the projection v = Pu can be performed efficiently by solving the linear system

[
Sn T

T
0

T0 0

] [
v

w

]
=

[
u

0

]
,

that is, by solving with the factors of the constraint preconditioner M , not with those of

the stochastic preconditioner Sn. The residual update strategy [29] enforced to reduce

the effects of roundoff errors occurring in the computation of the projected residual

requires an extra solve with the factors of M at each iteration of the PPCG. Therefore,

two applications of the inverse of the preconditioner is needed at each PPCG iteration,

which makes PPCG and BiCGStab to have about the same cost per one iteration.

5 Computational results
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Fig. 1 Speedup of DSC method in
solving a unit commitment problem
with a relatively small first stage.

In this section we present the computational re-

sults of the DSC and PSC approaches presented

in the previous section. We have used Fusion, a

320-node computing cluster at Argonne National

Laboratory using an InfiniBand QDR intercon-

nect with 2 µsec latency. Each node is dual-socket,

quad-core and therefore has 8 cores. Each core op-

erates at 2.53 GHz. A minimum of 16 GB memory

is available for each node.

Both the DSC and PSC algorithms were im-

plemented in a parallel interior-point solver for

stochastic programming (PIPS) we developed re-

cently. PIPS uses the object-oriented design of

OOQP [21] and reuses many of OOQP’s classes.

The largest problem we have solved with PIPS

consists of 28.9 millions variables: 8, 892 first-

stage variable, 7, 226 second-stage variables and

4, 000 scenarios. The problem is similar to the

unit commitment problem described in Section

5.1 but has simplified dynamics and has been replicated artificially for testing pur-

poses. The speedup obtained by PIPS using the DSC approach is shown in Figure 1.

Parallel efficiencies of 0.95, 0.92, and 0.77 are reached when the number of cores is

increased from 80 to 400, 600, and 1, 000, respectively. In the case of a building energy

system control problem [54], almost perfect scaling was obtained from 10 cores to 50

cores. The ratio of the number of first-stage variables and the number of second-stage

variables is small for both problems, and therefore the bottleneck created by the Schur

complement does not affect significantly the scalability. However, this is not the case

for the problems described in the following section, and the PSC method is able to

overcome this limiting behavior as will be shown in Section 5.3.
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5.1 The test problems

The computational framework presented in [14] integrates the Weather Research and

Forecasting (WRF) model in stochastic unit commitment and energy dispatch formu-

lations that account for the wind power in the generation of the electricity. The unit

commitment (UC) problem of the above study is a mixed integer linear programming

problem and involves a network of 10 thermal generators and 12 wind farms (each of

50 turbines). We solved a relaxation of the problem and obtained the sample average

approximation problem by using a set of 30 scenarios for the wind power levels. We

denote this instance as UC1. A second instance, UC1Q was artificially obtained by con-

sidering random quadratic costs occurring in the operation of the thermal units. UC1

and UC1Q are used in the next subsection to study the spectrum of the preconditioner.

Two larger UC problems, denoted by UC2 and UC2Q, were obtained by replicating

three times the generators of UC1 and UC1Q, respectively. A set of 120 (resampled)

scenarios were used for these instances. The problems have a total of 210, 000 variables

and 443, 000 constraints. The first-stage problem is relatively large when compared to

the second-stage problems, with 10, 800 variables and 24, 000 constraints and 1, 656

variables and 3, 494 constraints, respectively. UC2 and UC2Q problems are used in

subsection 5.3 to investigate and compare the scalability of the DSC and PSC methods.

While UC1 and UC2 are linear programming problems (Q0 = 0 and Q(ω) = 0

in (2)), UC1Q and UC2Q are convex quadratic problems with Q0 and Q(ω) being

semidefinite diagonal matrices. We note that the technology matrix T and the recourse

matrix W are fixed (deterministic) for all instances. The randomness occurs only in the

right-hand side b(ω) for the linear problems and in the right-hand side and quadratic

coefficients Q(ω) for the quadratic problems.

5.2 Quality of preconditioners

The first numerical experiment investigates the quality of the Sn preconditioner when

UC1 and UC1Q instances are solved. The number of scenarios included in Sn was n = 5

out of a total of 30 scenarios. We first look at the eigenvalues of the preconditioned

matrix S−1n SN at different moments in the solving process: IPM iterations 5, 15, 25,

and 35. The smallest and largest 50 eigenvalues of S−1n SN are displayed in the left plots

of Figure 2. This figure shows a solid clustering of the eigenvalues at 1. The dispersion of

the extreme several eigenvalues as the optimization approaches the solution is caused by

the adverse effect of the ill-conditioning of the diagonals Di, i = 0, . . . , n on the average

approximation Sn of SN . UC1Q exhibits a more severe dispersion of the eigenvalues

than the UC1 instance towards the end of the optimization. This behavior is likely

caused by the presence of the randomness in the objective of UC1Q and reflects in a

increased number the Krylov iterations for UC1Q over UC1 close to optimality.

Both BiCGStab and PPCG take just less than 3 iterations for more than half of the

outer iterations but need an increasing number of iterations after that. For the UC1

instance we recorded a maximum of 88 BiCGStab iterations and 64 PPCG iterations at

the last (36th) IPM iteration. As a comparison, at the same IPM iteration for UC1Q,

186 BiCGStab iterations and 132 PPCG iterations were obtained . In the case of UC1Q,

there was an extra IPM iteration at which a maximum of 308 BiCGStab iterations and

200 PPCG iterations were recorded.
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Fig. 2 In the left figures, the 50 largest and the 50 smallest eigenvalues of the preconditioned
matrix at IPM iterations 5, 15, 25, and 35 are depicted for UC1 and UC1Q. The right figures
show the number of inner iterations needed to solve the predictor system at each IPM iteration
for the same two UC instances.

The linear systems are 2608 × 2608 and extremely ill-conditioned at the last IPM

iterations (condition number is O(1013), see Table 1). They are solved with a relative

error of 10−8 for all IPM iterations. The relative error is the ratio of the norm of residual

and the norm of the right-hand side. We mention that the ill-conditioning occurring

during the last IPM iterations can be ameliorated and the number of Krylov iterations

can be potentially reduced by using techniques for early detection and removal of the

inactive first-stage variables and inequality constraints [13,27] or by regularizing the

saddle-point system [1].

IPM UC1 instance UC1Q instance
Iteration κ(C) κ(M−1C) κ(C) κ(M−1C)

1 7.68 · 108 1.04 3.27 · 108 1.08
5 1.10 · 1012 1.11 1.46 · 108 1.24
15 4.69 · 1013 6.51 · 104 3.70 · 1013 5.99 · 104

25 2.18 · 1010 4.42 · 106 7.86 · 1010 5.28 · 103

35 1.82 · 1013 1.82 · 1010 8.44 · 1013 1.19 · 1010

Table 1 Condition numbers of the Schur complement matrix C and of the preconditioned
matrix M−1C. M is constraint preconditioner given by (34).

Another important observation is that the number of iterations needed by BiCGStab

and PPCG is almost the same for the first 30 IPM iterations. After that PPCG takes

advantage of the positive-definiteness of the (1, 1) block and needs fewer iterations than

BiCGStab to solve the system within the same accuracy.
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5.3 Practical performance of the preconditioners

We use the UC2 and UC2Q problems to study the scalability of DSC and PSC. The

mechanism described in Section 4.1 that decides whether to use DSC or PSC was

disabled for the tests presented here. Strong scaling is investigated, that is, the same

problem was solved with an increasing number of cores. A linear scaling occurs when

the execution time decreases linearly as the number of cores increases.
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Fig. 3 Strong scaling of DSC and PSC using P and P + 1 cores, respectively
(P = {1, 2, 5, 10, 15, 20, 30}). Left plot obtained for UC2, right plot for UC2Q.

For the strong scaling investigations of this section we solved UC2 and UC2Q

problems using DSC and PSC with P = {1, 2, 5, 10, 15, 20, 30} cores. Both problems

have a very large Schur complement matrix which adversely affects the strong scaling

of the DSC, as can be seen in Figure 3. PSC does not exhibit the same limitation and

scales linearly for a wide range of cores, 2-20. When using more than 20 cores, however,

the factorization of the preconditioner does not finish before the scenarios are done and

thus creates its own bottleneck in the parallel execution flow. Consequently, the scaling

is no longer linear, as shown in Figure 3.

We have used DSC with 1 core as a reference for the strong scaling of not only DSC

but also PSC. Therefore, Figure 3 also shows which method is faster. For example, the

reduction in the solve time obtained by PSC over DSC for UC2 is 20%, 28%, 33%,

and 24% for 10, 15, 20, and 30 cores, respectively. PSC yields similar gains for UC2Q

instance.
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6 Conclusions

In this paper, we presented a preconditioning technique for Schur complement linear

systems arising in the interior-point based parallelization of the two-stage stochastic

programming problems with recourse. The spectral analysis based on the Hoeffding’s

inequality from the theory of large deviations showed that an exponentially fast cluster-

ing of the eigenvalues occurs with the number of scenarios incorporated in the precon-

ditioner. The good quality of the preconditioner allows the IPM saddle-point systems

to be solved with the same accuracy as the direct solvers with a small number of Krylov

iterations.

Numerical experiments involving large instances of a stochastic unit commitment

problem indicate good practical performance. The small number of Krylov iterations

needed to solve the (preconditioned) Schur complement linear systems significantly

reduces the bottleneck caused by the direct factorization of the Schur complement

matrix. Consequently, the preconditioning technique exhibits a linear strong scaling

for a reasonably large number of processes. This range can be further extended by

preconditioning with more than one process. This can be done for example by using a

distributed-memory parallel dense linear solver as Elemental [46] or ScaLapack [9] for

the factorization and solves with the preconditioner. We plan to follow this approach

and to implement it in PIPS.

The preconditioning algorithm PSC can also be used when solving an SAA T -stage

stochastic programming, T > 2. In this case, the IPM saddle-point linear systems have

an arrow shape nested structure; that is, each of the diagonal blocks Ki, i = 1, . . . , N ,

of K from (11) have the arrow shape of K, recursively defined for T > 3. The Schur

complement technique we described in this paper can be then used for each of the first

T − 1 stages to decompose the problem [24]. The scalability of the DSC method may

be affected by stages with a disproportionately large number of variables, and the PSC

method should be used for such stages. We also note that a mixed DSC-PSC approach

for multistage problems is robust, in the sense that the implementation can decide at

runtime for each stage whether it is profitable or not to employ the preconditioning

based on the decision mechanism presented in Section 4.1.
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50. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral
functions. Mathematical Programming 35, 309–333 (1986)
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